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We study some effects of regular bottom corrugations on water waves in a long
rectangular tank with vertical endwalls and open top. In particular, we consider
motions which are normal modes of oscillation in such a tank. Attention is focused
on the modes whose internodal spacing, in the absence of corrugations, would be
near the wavelength of the corrugations. In these cases, the perturbation of the eigen-
functions (though not of their frequencies) can be significant, e.g. the amplitude of
the eigenfunction can be greater by a factor of ten or more near one end of the
tank than at the other end. This is due to a cooperative effect of the corrugations,
called Bragg resonance. We first study these effects using an asymptotic theory, which
assumes that the bottom corrugations are of small amplitude and that the motions
are slowly varying everywhere. We then present an exact theory, utilizing continued
fractions. This allows us to deal with the rapidly varying components of the flow.
The exact theory confirms the essential correctness of the asymptotic results for the
slowly varying aspects of the motions. The rapidly varying parts (evanescent waves)
are, however, needed to satisfy accurately the true boundary conditions, hence of
importance to the flow near the endwalls.

1. Introduction
It has been recognized for well over twenty years that a series of corrugations on the

bottom of a layer of water of otherwise uniform depth can have a cooperative effect
on an incident water wave, if the latter has a wavelength close to twice the spacing of
the corrugations. This phenomenon is usually referred to as ‘Bragg reflection’, ‘Bragg
scattering’, or sometimes ‘Bragg resonance’, from its analogy to the similar effect
with X-rays in crystals, which was discovered by the Braggs. While the water wave
analogue may not have the fundamental scientific significance of the X-ray prototype,
it does have some interesting features which have attracted studies of several kinds.
For instance, while not especially common, there are some beaches which have a
sizable number (ten or more) of shore parallel sandbars, with a nearly regular spacing
comparable to half the wavelength of some ocean surface waves. There is some
theoretical evidence that for these beaches the Bragg reflection effect may play a part
not only in the response of the nearshore wave structure to incident waves from the
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deep sea, but also in the formation and evolution of these parallel sandbar patches
themselves (see, for instance, Mei, Hara, & Yu 2001; Yu & Mei 2000b).

The basic physical idea, as well as the first theoretical studies (which showed how
a wavetrain of the appropriate frequency passing over a patch of sandbars would be
partially reflected and so would have its amplitude reduced on leaving the patch) led
to suggestions that perhaps artificial sandbars could be used to protect beaches. One
might well question the practicality of this idea, simply on the grounds that real ocean
wave fields are variable in frequency (and direction) and have a considerable random
component. Nevertheless at least one attempt to try this on an actual beach has been
made (Baillard et al. 1990;† see also Baillard, DeVries & Kirby 1992). A somewhat
less obvious theoretical reason to question the protective effect of a series of bars, even
with a nearly monochromatic and long-lasting wave field provided by a remarkably
cooperative ocean, was put forward by Yu & Mei (2000a), where it was shown
that under certain conditions a bar patch can actually enhance the wave amplitude
onshore. This occurs when there is significant ordinary reflection from the shoreline,
in addition to the Bragg reflection. The wave reflected from the shore also passes
over the bar patch and is itself Bragg-reflected, producing a wave propagating back
toward the shore which adds to the part of the original incident wave which has passed
over the bar patch. If these two waves are in phase, they tend to enhance the wave
field onshore. Whether or not this happens depends delicately on where the (effective)
position of the shoreline reflector is with respect to the bar crests (Yu & Mei 2000a).
The mathematics was provided by Mei (1985), who formulated an asymptotic theory
based on the general ideas of slowly varying waves. This is appropriate here because
the effect on a wavetrain of an individual bottom corrugation is generally quite small;
it is only when the wavetrain passes over a number of bars with appropriate spacing
that their collective effect can be more significant.

The present paper was largely motivated by the above-mentioned somewhat subtle
interaction between the Bragg reflection of a series of sandbars and a shoreline
reflection, particularly when the latter is strong, as for instance with a seawall. We
decided to investigate the effects of a considerable number of bottom corrugations
on the linear normal modes of a long rectangular tank with vertical ends. The water
depth is otherwise uniform. We anticipated that the modes with natural frequencies
close to the Bragg resonance frequency of the corrugations would be significantly
affected. Since we want to have a large number of corrugations in the tank these
would be relatively ‘high’ modes. For these modes, we expected a major perturbation
on the eigenfunctions (not their natural frequencies), one which might well depend
sensitively on the position of the endwalls with respect to the corrugation crests. This
problem is treated using the asymptotic theory in § 2.

The asymptotic theory of waves over a corrugated bottom describes the motion
(in lowest approximation) locally as a superposition of two oppositely directed plane
waves, but the amplitudes of these two waves vary slowly (in space and in time) in
accordance with Mei’s equations. If one tries to go beyond the lowest approximation,
however, it is generally not possible to satisfy the boundary conditions by using only
these two waves, as they no longer have exactly the same functional form along a
vertical wall. The asymptotic theory really satisfies these boundary conditions only in
some kind of averaged sense. However, not all aspects of the flow are slowly varying,

† It was unsuccessful, mainly for a different practical reason: erosive processes caused the concrete
‘bars’ to sink rapidly into the underlying sand.
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meaning that the asymptotic theory can suffer difficulties. This was indeed noticed
in Yu & Mei (2000b), where the slow variation breaks down, causing difficulty in
satisfying the boundary condition for sediment flux at higher order.

These motivate us to reconsider this normal mode problem, without making use
of any slowly varying assumption. It will be recalled that for a flat bottom the
linear wave problem has, for any given frequency, a family of two propagating waves
going in opposite directions, and two infinite sets of evanescent waves decaying
exponentially in opposite directions. To solve the normal mode problem for a tank
with a flat bottom, it is only necessary to superpose the two propagating waves.
By satisfying the boundary condition on both ends, the natural frequencies and
their eigenfunctions can be determined, usually described as standing waves. The
evanescent waves are not needed at all, and in fact are usually not even mentioned
in elementary treatments. These solutions are, however, essential in problems with
some other boundary conditions on the ends, for instance the wavemaker problem.
The evanescent waves are also needed to solve the normal mode problem for a tank
of uniform depth but with non-vertical endwalls. Thus, they can be of importance to
problems concerning sediment erosion near to coastal structures.

We have found it possible to find analogues of both the two propagating waves
and of the two families of evanescent waves for the corrugated bottom case. In doing
this we have selected, mostly to simplify the mathematics, a specific form of bottom
corrugations which is nearly sinusoidal at small amplitude but distinctly not so at
high amplitude. This is described in § 3, with details of some of the results in § 4.
Finally, in § 5 we return to the normal mode problem, making use of these analogues
of both the propagating and evanescent waves to deal more satisfactorily with the
boundary conditions on the ends, as well as to improve some details of the surface
elevation close to the ends. Concluding remarks follow in § 6.

2. Asymptotic theory
The asymptotic theory of Bragg resonance of water waves (Mei 1985) assumes

that both motions and sinusoidal bottom corrugations are of small amplitude. In the
vertical plane (x, z), where x is along the tank and z points upward with z = 0 at the
undisturbed water surface, the corrugated bottom with a wavenumber 2kB is given
by

z = −h + εh cos 2kBx, (2.1)

where ε � 1, and h is the mean (constant) water depth. Given the free surface z = ζ ,
where

ζ = 1
2
(AeikBx + Be−ikBx)e−iωBt + c.c., (2.2)

the velocity potential, to the lowest-order approximation, can be described by

φ =
−ig

2ωB

cosh kB(z + h)

cosh kBh
(AeikBx +Be−ikBx)e−iωBt + c.c., (2.3)

where the wave frequency ωB is defined as

ω2
B = gkB tanh kBh. (2.4)

A and B are the amplitudes of the two waves in opposite directions, slowly varying
over the corrugations according to Mei’s equations, i.e.

(∂t + Cg∂x)A= − iΩcB, (∂t − Cg∂x)B = − iΩcA, (2.5a, b)



212 L. N. Howard and J. Yu

where Cg = ∂ωB/∂kB is the wave group velocity and

Ωc = 1
2
(ωB kBh/ sinh 2kBh) ε (2.6)

is the cutoff value of frequency deviation. If ε = 0 (flat bottom), (2.2)–(2.6) give the
exact solution to the linear wave problem in constant water depth, i.e. two waves
propagating in opposite directions and with constant amplitudes A and B; each of
these waves has wavelength 2π/kB which is twice the spacing of the corrugations that
will be there when ε > 0. Thus, defined by (2.4), ωB is called the Bragg resonance
frequency. The asymptotic theory (2.5) assumes that the spatial and time scales of
A and B are both greater than the surface wavelength 2π/kB and period 2π/ωB ,
respectively, by a factor of O(1/ε). For example, in the case of waves passing over a
patch of bottom corrugations, the length of the patch L and the time L/Cg are the
appropriate slow scales. Mei also used ε to characterize the small wave slope, allowing
for the inclusion of nonlinearity in the flow by considering higher-order terms.

For the normal mode problem in a tank of length L, the normal velocity must be
zero at the vertical endwalls, i.e. at x = x0 and x = x0 + L. Note that x = 0 has been
chosen as the location of a corrugation crest – see (2.1) – and the left endwall need
not be at such a crest. Since u = ∂φ/∂x, we write from (2.3) that

A − e−i2αB = 0 at x = x0, A − e−i2βB = 0 at x = L + x0, (2.7a, b)

where α = kBx0, β = kBL−Nπ + α. We should like N to be the nearest integer number
of corrugation wavelengths to the actual length of the tank. If L happens to be exactly
half-way between two adjacent integer multiples of the corrugation wavelength, N is
taken to be the larger of the two. To be definite, we shall also let x = 0 be the nearest
corrugation crest to the left endwall at x = x0. If the left endwall happens to be at a
trough, we set kBx0 = π/2. In doing so, we thus set the ranges of α and β to be

−π/2 < α � π/2, −π/2 � β − α < π/2, (2.8)

which give a parallelogram in the (α, β) plane. The choice of N implies that the
normal mode to be constructed will tend to the Nth mode of the flat bottom case as
ε → 0.

A wall is always an anti-node, meaning that the relative phase of the two surface
waves (left- and right-going) is known and fixed. As α is a measure of the phase of
the left endwall relative to the corrugation crests, it also provides a measure of the
phase difference of the surface waves from the corrugation wave; β has a similar role
for the right endwall. The critical importance of the phase relation among the three
waves to the behaviour of Bragg scattering was pointed out in Yu & Mei (2000a).
We shall see that both α and β are similarly critical for the spatial structure of some
normal modes.

For ε > 0, we look for time-periodic solutions, A= Â(x)e−iΩt and B = B̂(x)e−iΩt ,
which satisfy (2.5) and (2.7). This gives rise to eigenproblems, finding the eigenvalue

Ω and the corresponding eigenfunctions Â(x) and B̂(x). In the framework of the
asymptotic theory, these periodic motions are normal modes of the tank with
corrugated bottom. In view of (2.2), the frequency of the motion is ω = ωB +Ω .
Depending on whether the detuning is subcritical (Ω2 � Ω2

c ) or supercritical
(Ω2 >Ω2

c ), the wave amplitudes (i.e. the eigenfunctions) can vary either exponentially
or oscillatorily along the tank.
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Figure 1. Graph of G as a function of its first argument (α or β) for some fixed value of θ/2
(about 0.8 in this case). The vertical asymptotes (dashed lines) are at −θ/2 and π − θ/2. ——,
G(α, θ/2); · · · · · ·, G(β, θ/2).

2.1. Exponential behaviour: Ω2 < Ω2
c

Define

Q =
√

Ω2
c − Ω2, q = QL/Cg. (2.9)

Â(x) and B̂(x) are linear combinations of eqx/L and e−qx/L, so the wave amplitudes

vary exponentially over the corrugations, as discussed in Mei (1985). For Â(x) and

B̂(x) to be non-trivial, the eigenvalues must satisfy

e−q
(
1 − ei(θ−2α)

) (
1 − e−i(θ+2β)

)
− eq

(
1 − e−i(θ+2α)

) (
1 − ei(θ−2β)

)
= 0, (2.10)

where

Ω/Ωc + iQ/Ωc ≡ eiθ , 0 <θ < π. (2.11)

This range of θ is chosen since Q > 0 but Ω may have either sign. Since q is bounded
by ΩcL/Cg , it is clear from (2.10) that if the coefficient of one of eq or e−q is zero,
the other must be as well. When this is the case, we must have either α = β = θ/2
or α =β = −θ/2, in view of (2.8) and the fact that q �=0.† In the first case, the
eigenvalue is given from (2.11) as Ω/Ωc = cos 2α, and Q/Ωc = sin 2α; in the second
case, Ω/Ωc = cos (−2α), and Q/Ωc = sin (−2α). When neither of these is true, we can
rewrite (2.10) as

e2q =
G(α, θ/2)

G(β, θ/2)
, where G(α, θ/2) ≡ sin (α − θ/2)

sin (α + θ/2)
. (2.12)

This determines the eigenvalue Ω , for given α, β and Ωc. Figure 1 shows G(α, θ/2)
and G(β, θ/2) over the range of [−π, π]. Clearly, G is periodic of period π. Since
e2q � 1, there are only certain parts of the parallelogram (2.8) that can satisfy (2.12).
These regions can be identified, with the assistance of figure 1, and are given as

† There are two other ways that the coefficients of eq and e−q in (2.10) could be zero, i.e.
eiθ = ei2α = e−i2α , or eiθ = ei2β = e−i2β . It is easily seen that in both cases ei2θ = 1, requiring θ = 0 or π
and Q= 0 as well.
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Figure 2. The possible values of α and β for normal modes of subcritical detuning
conditions (exponential behaviour). (a) θ < π/2; (b) θ > π/2.
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(2.13)

The location of these regions depends on the value of θ . In particular, if θ < π/2,
region V is empty, as is region III if θ > π/2. Figures 2(a) and 2(b) show the sketches
of these regions inside the parallelogram for small and large θ , respectively.

Given α and β , a convenient way to find Ω is as follows. We first select a sequence
of values of θ , consistent with at least one of the regions in (2.13). For each θ , q is
computed from (2.12). Since QL/Cg = q , it follows from (2.11) that ΩcL/Cg = q/ sin θ

and ΩL/Cg = cos θΩcL/Cg (i.e. Ω = cos θΩc). A correspondence is thus established
between the chosen sequence of θ and a sequence of pairs of Ω and Ωc, given
the parameters α, β, h, L and ωB specifying the problem. Note that with ωB and
h being given, Ωc and ε play virtually the same role: cf. (2.6). Recall that εh is
the amplitude of corrugations. It is worth noting that ΩL/Cg and ΩcL/Cg are the
dimensionless detuning and cutoff frequencies, respectively, since the slow time scale
is L/Cg . Moreover, their relationship, given parametrically via θ , is solely determined
by α and β: cf. (2.9)–(2.12). Thus, the procedure just outlined allows us to construct
a graph of ΩL/Cg = f (ΩcL/Cg, α, β), for which a subcritical normal mode exists.
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Once the eigenvalue Ω is known, the eigenfunctions are found to be

Â(x) = a
[
sin (α + θ/2) e−iθeq(x−x0)/L − sin (α − θ/2) e−q(x−x0)/L

]
, (2.14a)

B̂(x) = a
[
sin (α + θ/2) eq(x−x0)/L − sin (α − θ/2) e−iθe−q(x−x0)/L

]
, (2.14b)

where a is constant and arbitrary. From these, the actual surface elevation profile can
be obtained from (2.2). The ratio of the surface amplitudes at the right and left end
of the tank is given by

|Â(x0 +L)/Â(x0)| = [(cos θ − cos 2α)/(cos θ − cos 2β)]1/2 . (2.15)

Various examples will be presented later in comparison with the numerical results
from the exact theory of § 3. We cite one simple case here to illustrate the meaning
of the exponential behaviour. This is a case of perfect tuning (Ω = 0) when θ = π/2.
We take from region I in (2.13) α = 5π/12 and β = 4π/15, i.e. the left endwall of
the tank is 5/12 and the right end 4/15 of a wavelength to the right of the nearest
crest. If N = 16, kBL =Nπ + β − α = 15.85π, i.e. the length of the tank is less than
16 corrugation wavelengths by about 1%. From (2.12), q = 1.1997. Since Q =Ωc,
we have ΩcL/Cg = q . For kBh = 0.5, we find from (2.6) that ε � 0.1048, and from
(2.15) that |Â(x0 + L)/A(x0)| � 2.878. The frequency of the normal mode is exactly
ωB , comparing with 1.0087ωB , which is the natural frequency of the 16th mode of
the flat-bottomed tank. Thus, in the presence of bottom corrugations of amplitude
only 0.1048 times the water depth, though the frequency is changed very little, the
eigenfunction of this mode is altered significantly: the ‘standing wave’ is almost three
times greater at the right end than at the left (in terms of energy density, it is
2.8782 = 8.2829 times). By a small shift of the relative position of the corrugations
and the ends, keeping the tank length fixed, we could convert β into −α and α into
−β , switching to region II, and find the wave amplitude greater in the same ratio at
the left end.

2.2. Linear behaviour: Ω2 = Ω2
c

When the wave frequency deviates from ωB by exactly ±Ωc, Â and B̂ have a linear
dependence in x, as in Mei (1985). The eigenvalue is found to be

ΩL/Cg = 1
2
(cot β − cotα), −ΩL/Cg = 1

2
(tan β − tan α). (2.16a, b)

Since Ωc > 0, the values of α and β satisfying (2.16) can only fall in the regions
shown in figure 3(a) for θ =0 (Ω =Ωc) and in figure 3(b) for θ = π (Ω = − Ωc).
Note that region III for θ = 0 is a subset of region IV for θ = π, and region
V for θ = π is a subset of region II for θ =0. Therefore, given a pair of (α, β)
in the two triangles of the parallelogram, [−π/2 < α < 0, 0 � β <α + π/2] and
[−π/2 <α < 0, −π/2 + α <β < − π/2], both Ω = Ωc and Ω = − Ωc can occur. In
the triangles, [0 <α < π/2, −π/2 + α <β < 0] and [0 <α < π/2, π/2 < β < π/2 + α],
neither of (2.16) can be satisfied.

In the (Ω, Ωc) plane, the region in which the amplitudes have exponential behaviour
is −Ωc <Ω <Ωc. This is a wedge opening upward, with vertex at the origin. Any
mode which (for some Ωc > 0) lies inside this wedge has a frequency which deviates
from ωB by no more than |Ωc|, and must approach some normal mode of the
flat-bottomed tank as ε → 0 (i.e. Ωc → 0). The latter is a standing wave with
wavenumber kn = nπ/L, where n is an integer, and frequency ω2

n = gkn tanh knh. Since
none of ωn is necessarily exactly equal to ωB , for sufficiently small ε there is usually
no exponential mode at all. In other words, if there are any solutions of (2.11) and



216 L. N. Howard and J. Yu

π

α α

β

π

β

–π/2 π/2

π/2

–π/2

–π

III I

II

–π/2

π/2

π/2

–π/2

–π

IV

V

(a) (b)

Figure 3. The possible values of α and β for normal modes of linear behaviour, i.e. detuned
from the Bragg resonance frequency by exactly the cutoff value. (a) Ω = Ωc (θ = 0); (b) Ω =
− Ωc (θ = π).

(2.12) for some ε > 0, then as ε → 0 the corresponding Ω must eventually leave the
wedge, passing through its boundary at one of the points given by (2.16a) or (2.16b).
Outside the wedge, there are the normal modes (for some ε > 0) whose amplitudes
vary oscillatorily along the tank, as will be seen in § 2.3. If ωB happens to be a
natural frequency of the flat-bottomed tank, the exponential case can occur only
when L =Nπ/kB , i.e. when α =β . Both of (2.16) are satisfied with ε = 0, but neither
can be for any ε > 0. In this case the Nth mode of the flat-bottomed tank passes
directly into the wedge of exponential behaviour as soon as ε becomes positive, and
stays there. For α �= β , this Nth mode must first become an oscillatory mode for
sufficiently small ε, then enter the wedge, becoming an exponential mode at some
positive value of ε. In some cases one of its neighbours may also enter the wedge for
large enough ε, i.e. (N + 1)th or (N − 1)th mode. However, there never seem to be
more than two modes inside the wedge, there being at most two possible entry points
on its boundary. This is illustrated by an example in figure 4, using the asymptotic
theory at α = −π/6 and β = π/6, in which there are eventually two exponential modes.
On the (ΩL/Cg, ΩcL/Cg) plane, it shows the tracks of the Nth and (N + 1)th modes
down to ε = 0. The calculation inside the wedge is carried out using the procedure
described above; for the outside, it is done as described in § 2.3.

For the example in § 2.1, Ω = Ωc =0.0062731ωB from (2.16a), and Ωc = 0.21273εωB

from (2.6). Thus, ε = 0.029488 for the mode to be detuned by exactly the cutoff
frequency.

2.3. Oscillatory behaviour: Ω2 >Ω2
c

This is the case of supercritical detuning, as classified in Mei (1985). Define

Q =
√

Ω2 − Ω2
c , q =QL/Cg. (2.17)
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Figure 4. The two modes enter the wedge at some ε > 0, becoming exponential modes, for
α = − π/6 and β = π/6. · · · · · ·, Nth mode; – – –, (N + 1)th mode.

Â and B̂ are linear combinations of eiqx/L and e−iqx/L, and thus oscillate (slowly) along
the tank. For non-trivial solutions, we require

eiq(1 − e−i2βT −1)(1 − e−i2αT ) − e−iq(1 − e−i2βT )(1 − e−i2αT −1) = 0, (2.18)

where T = Ω/Ωc + Q/Ωc. It is readily seen from (2.17) that

Ω/Ωc = 1
2
(T + T −1), Q/Ωc = 1

2
(T − T −1). (2.19a,b)

Since Q/Ωc > 0, (2.19b) implies that (a) 1 <T < ∞, Ω/Ωc > 1 or (b) −1 < T < 0,
Ω/Ωc < −1. Note that the limiting case Q =0 (Ω = ± Ωc) corresponds to T = 1 or
T = −1, which is the same as in (2.16). For Q �= 0, (2.18) leads to

q = mπ + (α − β + γ1 − γ2), (2.20)

where m is an integer and

tan γ1 =
sin 2α

T − cos 2α
, tan γ2 =

sin 2β

T − cos 2β
. (2.21a,b)

Here γ1 and γ2 lie in (−π/2, π/2]. The eigenfunctions are

Â(x) = a
(
e−iq(x0−x)/L + T −1ei2(α + γ1)eiq(x0−x)/L

)
, (2.22a)

B̂(x) = a
(
T −1e−iq(x0−x)/L + ei2(α + γ1)eiq(x0−x)/L

)
. (2.22b)

The algorithm for finding the eigenvalues is similar to that in § 2.1. For given α and
β , we select a sequence of values of T from an appropriate range. For each T , we
determine γ1 and γ2 using (2.21), and q from (2.20) for some integer m. From (2.19),
Ω and Ωc are obtained for given water depth and tank length, and ε follows from
(2.6). Note that m � N for the asymptotic theory to be accurate, and it should also
be selected so that q > 0.

The multiple values of q are necessary, allowing us to see how the normal modes,
in the neighbourhood of the Bragg frequency, connect to those of the flat-bottomed
tank as ε → 0: the mode associated with 1 � m � N connects to the (N + m)th mode
of the flat-bottomed tank for Ω > 0, and to the (N − m)th mode for Ω < 0; the mode
associated with m =0 connects to the Nth mode provided that α >β if Ω > 0 or α < β

if Ω < 0. Only one or two of these will enter the wedge of exponential behaviour as
ε becomes positive, but the others are still present. Detailed explanation is given in
Appendix A.1.
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3. Exact solutions using continued fractions
The asymptotic theory just described is superior in illuminating the physics. Still,

it is approximate, and only applicable when the corrugations are of small amplitude
and the tank is long. Moreover, it is only appropriate for normal modes with
frequencies near ωB . These limitations can be largely overcome, though at the expense
of somewhat more complicated calculations, and perhaps a less transparent physical
picture.

In the following we consider only the linear theory of waves with simple harmonic
time dependence. We do not assume that the bottom corrugations are of infinitesimal
amplitude, though for simplicity we shall take them to be of a specific form,
approximately sinusoidal. We shall in this section construct the solutions for an
infinitely long tank (or channel), and return in § 5 to the normal mode problem for
a tank with vertical endwalls. From the linear wave theory, the velocity potential
φ(x, z, t) should satisfy

∇2φ = 0 for −h + hb � z � 0, −∞ <x < ∞, (3.1)

φz = φxhb,x at z = − h + hb, (3.2)

φtt + gφz = 0 at z = 0, (3.3)

where hb is the profile of the bottom corrugations. For mathematical convenience, we
shall use a conformal map, i.e.

kBx = ξ − εb sin 2ξ cosh 2η, kBz = η − εb cos 2ξ sinh 2η, (3.4a,b)

where

b = kBh/sinh (2kBh). (3.5)

Furthermore, we assume that the corrugations have the form

hb = εh cos 2ξ, where ξ − εkBh coth (2kBh) sin 2ξ = kBx, (3.6)

so that the undisturbed free surface z =0 is mapped onto η = 0 and the bottom
z = −h + hb onto η = −kBh, making the actual flow domain a strip on the mapped
plane. For small ε, it is clear that hb � εh cos (2kBx). The transformation (3.4) has been
used for a somewhat similar purpose by Benjamin, Boczar-Karakiewicz & Pritchard
(1987). We shall restrict attention to ε � ε∗, where

ε∗ = tanh 2kBh/(2kBh), (3.7)

for when ε > ε∗, x ceases to be a monotonic function of ξ and solutions calculated in
the (ξ, η) plane do not seem to have any meaning in the (x, z) plane. As ε → ε∗ from
below, the crests of the bottom corrugations become cusps, with infinite slope. Since
ε∗ < 1, these crests do not penetrate the surface. Some bottom profiles are shown in
figure 5 for ε � ε∗ and kBh = 0.5.

For periodic motion of angular frequency ω we may set φ = e−iωtϕ(x, z) + c.c. From
(3.1)–(3.3), we write the equations for determining ϕ, in the (ξ, η) plane, as follows.

ϕξξ +ϕηη =0 for − kBh � η � 0, −∞ <ξ < ∞, (3.8)

ϕη = 0 at η = − kBh, (3.9)

ϕη = ω2 (gkB)−1 (1 − 2εb cos 2ξ ) ϕ at η = 0. (3.10)

We shall use

λ= ω2 (gkB)−1 (3.11)
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Figure 5. Profiles of bottom corrugations. kBh = 0.5. · · · · · ·, ε =0.1ε∗; – – –, ε = 0.5ε∗;
——, ε = 1.0ε∗.

as a dimensionless measure of angular frequency. For perfect tuning to Bragg
resonance frequency, i.e. ω = ωB , λB = tanh kBh.

Following the general ideas of Floquet theory, we shall seek solutions of this
problem as superpositions of ‘Floquet solutions’, which have the form of a periodic
function of ξ , multiplied by an exponential in ξ . We are particularly interested in the
extension to finite ε of those exponentially decaying (or growing) solutions close to
the Bragg resonance frequency which we have discussed in § 2 using the asymptotic
theory (however, for small ε). A solution of this kind cannot have any net energy
flux, since it goes to zero at large distance in one direction or the other. Thus if we
follow a family of such solutions as ε → 0, the limiting flat bottom solution should
also have zero energy flux, and hence it cannot in fact be either of the propagating
waves alone, but must be a standing wave combination of both (of which there are
also two independent ones, e.g. cos kBx and sin kBx). In order to have such a family
of solutions as ε → 0, we need to stay inside the wedge of exponential behaviour: see
figure 4. In particular, if we let ε → 0 at a fixed frequency, we must set ω = ωB , i.e.
the ‘perfectly tuned’ family. Other families could be chosen, of course, so long as ω(ε)
remains inside the wedge (hence ω → ωB as ε → 0). This remark will be relevant to
the form of representation most suitable for the Floquet solutions, to which we now
turn.

3.1. ‘Propagating’ waves

It is readily seen that the Laplace equation (3.8) and the bottom boundary condition
(3.9) can be satisfied by a velocity potential of the Floquet form

ϕ = eµξ

∞∑
n = −∞

Dne
inξ cosh [(n − iµ) (η + kBh)]

cosh [(n − iµ) kBh]
, (3.12)

where µ is the Floquet exponent (complex in general) and Dn the Fourier coefficients
of the periodic factor of ϕ, independent of η. From the surface boundary condition
(3.10), we find a recurrence relationship among the Fourier coefficients, i.e.

LnDn = Dn−2 + Dn+2, (3.13)

where

Ln := − (εbλ)−1 {(n − iµ) tanh [(n − iµ) kBh] − λ} . (3.14)

Note that the cases of even and odd n are not coupled, and may be considered
separately. In fact, a solution represented with only odd n in (3.12) can be transformed,
by replacing µ with µ + i or µ − i, into a solution represented with only even n. Even
if we stick to a representation with only odd n, by replacing µ with µ ± 2i we should
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get different representations of the same sort. This artificial non-uniqueness may be
suppressed by requiring, say, that −1 < Imµ � 1.

A solution of the form (3.12) would resemble that described by the asymptotic
theory if µ is small of O(ε), and ω is close to ωB . In such cases, the dominant Fourier
coefficients are D±1, and the representation with odd n would be more convenient.
Furthermore, L±1 can be moderate even with ε small, while other Ln are then
necessarily large in comparison. We shall thus first take this case of odd ns, though
later we shall also find the representation with even n to be useful for other solutions
(see § 3.2). We can write (3.13) in two different forms:

Dn/Dn−2 = 1/(Ln − Dn+ 2/Dn), Dn/Dn +2 = 1/(Ln − Dn−2/Dn). (3.15a, b)

Ln depends on λ, ε, kBh and µ. We think of λ, ε and kBh as being given, and try
to find µ so that the Fourier series for ϕ is convergent. Thus we shall write Ln(µ),
suppressing the dependence on the other parameters. Using (3.15a) repeatedly, we
obtain

D1/D−1 =CF1(µ), (3.16)

where the continued fraction CF1(µ) follows the definition

CFn(µ) =
1

Ln(µ) − 1

Ln +2(µ) − 1

Ln+4(µ) − · · ·

. (3.17)

A glance at (3.14) shows that L−n(µ) = Ln(−µ). Thus, CF−n(µ) = CFn(−µ). As
noted above, for small ε we may expect to find L1 moderate for suitable small
µ and ω near ωB , but in any case the Ln always become increasingly large as n

increases. Thus we may expect CF1 to converge fairly rapidly. This is consistent with
Dn/Dn−2 → 0 as n → + ∞, as we wish for convergence of the Fourier series. From
(3.15b), we have similarly D−1/D1 = CF1(−µ), whose convergence is consistent with
that of the Fourier series for n → −∞. For this to be consistent with (3.16), we must
require

CF1(µ)CF1(−µ) = 1. (3.18)

The possible Floquet exponents µ are determined by this basic equation, given λ, ε

and kBh. Evidently, if µ is real then CF1(−µ) = CF1(µ)∗, the complex conjugate, and
so |CF1(µ)| = 1. These continued fractions do indeed converge rapidly, and both the
computation of CF1(µ) and the numerical solution of (3.18) are quite easy. We shall
give a number of results of such computations in § 4. A few remarks are noted.

First, suppose we fix a value of ω distinct from ωB , and let ε get small. If we
are considering a Floquet-type solution, and its exponent has a real part which is
zero or small, then our solution must be approaching some combination of the
two propagating waves corresponding to that frequency for the flat bottom; their
wavenumbers ±k satisfy ω2 = gk tanh kh. In this case for small enough ε we are
certainly outside the wedge, and the asymptotic theory indicates that we have a
periodically modulated wave (oscillatory behaviour), rather than an exponentially
varying one. The argument given above for approaching a standing wave as ε → 0 is
no longer applicable outside the wedge. Indeed the modulated wave might well carry
a net energy flux one way or the other. In this case the Floquet-type solution does
approach a propagating wave.

Second, if we allow ω to be sufficiently different from ωB (so is λ from λB), the
Floquet-type solution includes higher-order Bragg resonance, in which the water
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waves have a wavenumber equal not to half that of the bottom corrugations, but to
two or three halves times it, i.e. k = m (kB/2) with m being integers. This feature is not
suggested by the asymptotic theory (at least not without a significant modification), as
the asymptotic theory requires ω be sufficiently close to ωB . While we shall not go into
this any further here, it appears likely that the asymptotic theory could be modified
to investigate slowly varying combinations of left- and right-going propagating waves
of these wavenumbers (as well as of other integral multiples of kB).

Finally, as a historical note, it is interesting to observe that while the use of
continued fractions in more or less the way we have done here is familiar in connection
with the study of Mathieu functions, it can be traced back much earlier, indeed in
hydrodynamics. In the 1770s Laplace began his researches on tides on a rotating
globe and in that context made use of a method essentially equivalent to one using
continued fractions, which he explicitly brought in while presenting these results in
the Mécanique Céleste of 1799. Such techniques were also extensively used in the
further development of tidal theory by Kelvin, Darwin, and Hough in the last quarter
of the nineteenth century; see Lamb’s Hydrodynamics, sixth edition, Chapter VIII.

3.2. Evanescent waves

The evanescent waves for a flat bottom (ε =0) are obtained with a velocity potential
of the form

ϕ =eµξ cos[µ(η + kBh)] = eµξ cosh[−iµ(η + kBh)] (3.19)

with the ‘dispersion relation’ λ= − µ tan (µkBh) = − iµ tanh(−iµkBh), where λ is the
same as in (3.11). (3.19) is just like the n= 0 term in (3.12), and the dispersion relation
is obtained by setting Ln = 0 in the case n= 0 of (3.14). Thus it is convenient in
finding the extension to ε > 0 of the evanescent waves to use the even n case in the
representation (3.12). We can thus expect that the principal term in the series, when
ε is small, will be that for n=0 and the Floquet exponent will be close to one of the
solutions of λ= − µ tan (µkBh). We call the positive solutions of this equation µ0

1, µ0
2,

. . . , and evidently kBhµ0
n lies in the interval (nπ − 1/2π, nπ), getting close to nπ as n

increases; −µ0
n are the negative solutions.

The recurrence relationship (3.13) and the definition of Ln(µ) in (3.14) are the same,
regardless of n being odd or even. We thus write from (3.13) the following two forms:

D0/D2 = 1/CF2(µ), D2/D0 = L0(µ) − CF2(−µ), (3.20a,b)

where CF2 follows (3.17). The consistency of these two expressions means

L0(µ) = CF2(µ) + CF2(−µ). (3.21)

This equation is the analogue for evanescent waves of (3.18) for ‘propagating waves’.
As in the latter case, if µ is a solution, so is −µ. Note that if µ is real, CF2(µ) and
CF2(−µ) are complex conjugates; if µ is pure imaginary, the CF2s are both real.

3.3. Wave forms

After the Floquet exponent µ has been obtained for the ‘propagating’ and evanescent
waves, we still have to find the Fourier coefficients Dn which give the periodic factor in
(the extension to ε > 0 of) each case. In the propagating case, when µ is real (i.e. inside
the wedge of exponential behaviour), the CF1s are of modulus 1: cf. § 3.1. Suppose
CF1(µ) = eiθ . If we normalize so that D1 = eiθ/2, we see from (3.16) that D−1 =
e−iθ/2. It is then easy to show inductively from (3.13) that Dn and D−n are conjugates
for all odd n. Thus, with this normalization the sum of the Fourier series is real.
Since Ln increases rapidly with n, Dn+ 2 for large n would be given by (3.13) as the
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difference of two large and nearly equal numbers. A stable way to calculate Dn is as
follows.† From (3.15a), Dn/Dn−2 = CFn(µ). We set Rj := D2j +1/D2j−1, and select some
largish integer J with the intention of computing D1, D3, . . . , D2J+1. We first compute
RJ = CF2J+1 directly from (3.17), then successively calculate Rj−1 = (L2j−1 − Rj )

−1,
for j = J, J − 1, . . . , 2. Starting with D1, normalized as above, we then compute,
D2j + 1 = RjD2j−1 for j = 1, 2, . . . , J . The calculation of CFn(µ) using (3.17) is done
by the usual method: see Appendix A.2. The Floquet solution for the other root −µ

of (3.18) can be obtained from the + µ solution. This is done simply by reversing the
sign of µ in (3.12) and using for the Fourier coefficients the complex conjugates of
those found for +µ.

Essentially the same method applies, with even n, for the evanescent waves. In this
case the µj s are also found to be real and it is convenient to normalize by choosing
D0 = 1. It is then readily verified that D2j and D−2j are complex conjugates, so again
the sum of the Fourier series is real. Also the Fourier coefficients for the solutions
corresponding to the negative µj s are the conjugates of those for the positive ones.

4. Results
4.1. Range of exponential behaviour

In the asymptotic theory, the exponential behaviour occurs when |ω −ωB | = |Ω | <Ωc.
In the exact theory it occurs when Re µ �=0. We have indeed found that (3.18) has
pure real solutions for µ, if λ is sufficiently close to λB for 0 <ε � ε∗. As λ moves away
from λB on either side, µ eventually goes to zero and then becomes pure imaginary,
corresponding to the sinusoidally modulated waves (i.e. oscillatory behaviour). The
boundaries of the exponential region, where µ = 0, are the cutoff values λc± , where
λc− < λB < λc+ . The cutoff frequencies are ω2

c± = gkBλc± , which are the analogues of
ωB ± Ωc in the asymptotic theory. The values λc± are obtained by finding roots of
|CF1(0)| = 1, given kBh and ε.

For the asymptotic theory, (ωc±/ωB)asy = 1±(ε/ε∗) (4 cosh 2kBh)−1, and for the exact
theory, (ωc±/ωB)ex = (λc±/λB)1/2. In figure 6, ωc±/ωB are plotted against ε/ε∗, for
kBh = 0.1, 0.5, and 1.0 (from (3.7), ε∗ = 0.9869, 0.7616, 0.4820 correspondingly). For
small ε/ε∗, the asymptotic results agree very well with the exact values at all water
depths. This is expected. At large kBh, the excellent agreement holds even up to ε = ε∗,
which seems well beyond what might be expected. The asymptotic theory deviates
noticeably from the exact theory at relatively shallower water depth, e.g. kBh � 0.5,
and for large amplitudes of corrugations. In particular, ωc± are not symmetrical
about ωB according to the exact theory, and no longer linear in ε/ε∗ either. However,
the widths of the wedge, (ωc+ − ωc−)/ωB at all values of ε/ε∗, are still accurately
represented by the asymptotics.

4.2. Floquet exponents

Inside the wedge of exponential behaviour, the Floquet exponent µ is real, while
outside it (at least for some distance), µ is pure imaginary. Thus, a graph of µ2 as

† This method may well have been used by Laplace. It was certainly used by Nathaniel Bowditch
(1773–1838), the early American astronomer and navigator who translated the Mécanique Céleste
(volumes I–IV) into English, giving very extensive annotation (more than doubling Laplace’s text).
Bowditch’s translation was not published (1832, Vol. II) until after the death of Laplace, but was
done much earlier and had been praised by Laplace: ‘I am sure that M. Bowditch comprehends my
work, for he has not only detected my errors, but he has also shown me how I came to fall into
them’ (Struik 1991, p. 231).
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Figure 6. Graphs of ωc−/ωB ( < 1) and ωc + /ωB ( > 1) as functions of ε/ε∗ for different water
depths. Exact theory: · · · · · ·, kBh = 0.1; ——, kBh = 0.5; – – –, kBh = 1.0. Asymptotic theory:
�, kBh = 0.1; �, kBh = 0.5; 
, kBh = 1.0.

a function of λ is convenient for display both inside (µ2 > 0) and outside (µ2 < 0)
the exponential regime. A clarification remark is necessary. For the exact solution,
the Floquet exponent µ is for ξ , which is normalized using kB . The analogue of a
Floquet solution of the asymptotic theory is a solution of (2.5) in which A and B

are proportional to e−iΩt±qx/L, where q is related to Ω by (2.9). In terms of kBx, the
Floquet exponent of the asymptotics should then be µasy = ± q/(kBL). From (2.9)
and (2.6), and noting that ω − ωB = Ω , we get, after some algebra,

µ2
asy =

(
b + 1

2

)−2{ 1
4
b2ε2 −

[
(λ/λB)1/2 − 1

]2 }
, (4.1)

where b is given in (3.5). It is worth pointing out that µ for the exact theory, though
introduced for ξ , is in fact also the Floquet exponent for kBx. This is seen as follows.
Using the conformal mapping (3.4), one can show that eµξP (ξ, η) = eµkBxP1(kBx, kBz),
where

P1(kBx, kBz) = e−µεb sin 2ξ cosh 2ηP (ξ, η). (4.2)

Clearly, if P (ξ, η) is periodic in ξ with period π or 2π, so is P1(kBx, kBz) in kBx

with same period. In other words, when P (ξ, η) is the periodic factor in terms of ξ ,
P1(kBx, kBz) is the periodic factor in terms of kBx, corresponding to the same Floquet
exponent µ.

Figure 7(a) shows µ2 as a function of λ at kBh = 0.2 and for different values of ε,
comparing the exact theory and the asymptotics. As is anticipated, the discrepancy
becomes greater as the amplitude and steepness of the corrugations increase. This
is partially because the asymptotic method is based on small ε, but may in part
be due to the fact that it also uses a purely sinusoidal bottom profile, while the
profile used for the exact theory (in the x–z plane) is less sinusoidal as ε increases.†
In figure 7(b), similar data are plotted for ε =0.6, and for kBh = 0.2, 0.6, 1.0 and
1.2, showing the effects of water depth. The asymptotic theory is generally accurate,
except in sufficiently shallow water depth.

† To investigate this, however, we should either have to give up the advantages of the conformal
map into a strip and somehow work in the (x, z) plane, or find such a map for the region with a truly
sinusoidal bottom into a strip, in which case we should have a modified (3.10) with many harmonics.
In either case it seems that we should have to deal with more general infinite determinants than the
tri-diagonal kind which are equivalent to continued fractions.
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Figure 7. (a) Graphs of µ2 as a function of λ for kBh =0.2. Exact theory: ——, ε =0.4;
– – –, ε = 0.6; · · · · · ·, ε = 0.8. Asymptotic theory: 
, ε = 0.2; �, ε = 0.4; �, ε = 0.8. (b) Graphs
of µ2 as a function of λ for ε =0.6. Exact theory: – · – · –, kBh = 0.2; – – –, kBh = 0.6; ——,
kBh = 1.0. · · · · · ·, kBh = 1.8; Asymptotic theory: �, kBh = 0.2; 
, kBh = 0.6; �, kBh = 1.0; �,
kBh = 1.8.

4.3. Periodic factor for ‘propagating’ waves

The procedure for calculating the Fourier coefficients has been discussed in § 3.3. In
this way we have calculated D1, D3, . . . , D11, for kBh = 0.1, . . . , 2.0, and for each of
these for ranges of λ and ε covering the exponential regime. However, it is found that
Dn for n> 5 are insignificant (|D5/D1|max < 0.0023 and mostly considerably smaller;
|D11/D1| ∼ 10−8 to 10−11). The periodic factor P (ξ, η), i.e. the Fourier series in (3.12),
can thus be computed with sufficient accuracy by using just D1, D3, D5 and their
conjugates. This could be done for any η, but it is of greatest interest at the free
surface η = 0. The free surface periodic factor in terms of kBx is P1(kBx, 0), and
can be calculated parametrically from (4.2) with η = 0. We give some sample graphs
of P1(kBx, 0) and P (ξ, 0). In figure 8, kBh = 0.3, ε/ε∗ =0.5 and the values of λ (in
increasing order) run across the exponential regime from its left boundary to the
right. In figure 9, we choose ε/ε∗ = 1.0 and vary kBh. The value of λ is in the middle
of the exponential regime for the given kBh and ε. Finally, in figure 10 we illustrate
the effect of increasing ε (from 0.1ε∗ to ε∗), for kBh = 0.3 and λ being in the middle of
the exponential regime. Deviations from the purely sinusoidal wave form of the
asymptotic theory are most pronounced when kBh is smaller (i.e. the depth is small
compared to the Bragg resonant wavelength), and when ε is closer to ε∗ (i.e. the peaks
of the bottom corrugations are sharper, and nearer the surface). These deviations are
more pronounced when kBx is the independent variable than they are in terms of ξ .
The coordinate transformation seems to bring in higher harmonics to a greater extent
than do D3, D5, . . . , Dn.
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Figure 8. Periodic factors at kBh = 0.3, ε/ε∗ = 0.5 and for different values of λ. ——,
P1(kBx, 0) versus kBx; – – –, P (ξ, 0) versus ξ . (a) λ= 0.23953, (b) λ= 0.26539, (c) λ= 0.36488.
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Figure 9. Periodic factors at ε/ε∗ =1.0, and for different values of kBh. The value of λ is in
the middle of the exponential regime for given ε and kBh. ——, P1(kBx, 0) versus kBx; – – –,
P (ξ, 0) versus ξ . (a) kBh = 0.1, (b) kBh = 0.5, (c) kBh = 1.0.

5. Normal modes in a tank
We now wish to use these results to discuss the normal mode problem for a tank

with vertical endwalls, which we have considered in § 2 using the asymptotic theory.



226 L. N. Howard and J. Yu

–3 –2 –1 0 1 2 3

–2

–1

0

1

2

–3 –2 –1 0 1 2 3

–2

–1

0

1

2
(a)

(c)

(b)
P1, P

P1, P

P1, P

kBx, ξ

kBx, ξ

kBx, ξ

–3 –2 –1 0 1 2 3

–2

–1

0

1

2

Figure 10. Periodic factors at kBh = 0.3, λ= 0.29131, and for different values of ε. ——,
P1(kBx, 0) versus kBx; – – –, P (ξ, 0) versus ξ . (a) ε = 0.1ε∗, (b) ε =0.8ε∗, (c) ε = 1.0ε∗.

There are some complications to this, which make the problem quite different from
the flat bottom case (ε = 0). First, the ends are in general not at constant values of ξ

(or if they were taken to be at constant ξ they would not be at constant x). In the
(ξ, η) plane, let ξ = ξ0(η) and ξ = Nπ + ξ1(η) be the images of x = x0 and x = x0 + L,
respectively. From (3.4a), we have

α = ξ0 − εb sin 2ξ0 cosh 2η, β = ξ1 − εb sin 2ξ1 cosh 2η, (5.1a, b)

where α, β and N are the same as in (2.7). If we identify 2ξ0 (or 2ξ1) with E, 2α (or
2β) with M , and 2εb cosh 2η with e, both equations in (5.1) take the form of

M = E − e sinE, (5.2)

which is known as Kepler’s equation, arising in the theory of the elliptic orbits of
the planets (E is the ‘eccentric anomaly’, e orbital eccentricity and M the ‘mean
anomaly’ which is proportional to the time since the planet was at perihelion). In
our application, the effective eccentricity e has a maximum value ε/ε∗ occurring at
η = − kBh, given b in (3.5). Since we have restricted to ε/ε∗ � 1, the cases of interest
here correspond exactly to elliptic orbits in the context of celestial mechanics. Kepler
in 1627 published tables to facilitate the solutions to (5.2). Since then many algorithms
have been developed. An interesting historical account is in Colwell (1993). We have
used the first approximation in Markley (1996). Details of the algorithm are given in
Appendix A.3.

As an example we may take the illustration used in § 2.1, in which α = 5π/12,
β = 4π/15 and N = 16. Also, kBh = 0.5 and ε = 0.1048 which makes ε/ε∗ = 0.1376,
hence e = 0.0892 cosh 2η. For the left end, M = 5π/6, the calculation shows that
ξ0(0) = 1.330 at the surface and ξ0(−kBh) = 1.340 at the bottom. Similarly, ξ1(0) = 0.881
and ξ1(−kBh) = 0.904. Since the length of the domain is about 16π, it would be rather
difficult to distinguish this region from a rectangle in any ordinary diagram. The
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Figure 11. The shape of the right endwall ξ1(η) in the (ξ, η) plane: ——, β = 4π/15, kBh = 1.0
and ε/ε∗ = 0.5; – – –, β = 32π/127 (close to 4π/15), kBh = 1.0 and ε/ε∗ = 0.9. Note that the
actual position of the right endwall is ξ = Nπ + ξ1.

deviation from the vertical is somewhat more pronounced, if ε/ε∗ is nearer 1 and
α or β is near π/4 (or −π/4). It is also more noticeable if kBh is larger, for then
cosh 2η varies more over the range from the surface to the bottom. All of these just
mentioned bring about a more marked variation in the effective eccentricity, and it
is this variation in eccentricity that causes the variation of ξ0 or ξ1 with η. The shape
of the right end ξ1(η) is shown in figure 11 for the case β =4π/15, kBh = 1.0, and
ε/ε∗ = 0.5. Also included is ξ1(η), for β = 32π/127 (close to 4π/15), kBh = 1.0 and
ε/ε∗ = 0.9, which would just be the reflection of ξ0(η) if we took α = − β . However,
even in this extreme case the difference in the total length of the tank is less than 0.5,
which is only about 1% of either total length (approximately Nπ) when N = 16. Note
that N cannot be taken too small without losing much of the Bragg resonance effect.

In the flat bottom case, the propagating waves and all the evanescent waves are
found by separation of variables, and the z dependences are the eigenfunctions of
a Sturm–Liouville problem, hence orthogonal. This orthogonal structure is useful to
solve boundary value problems with data on vertical boundaries (e.g. the linearized
wavemaker problem). It can also be helpful when the endwalls are not quite vertical
(and simple standing waves do not suffice) by linearizing the boundary conditions.
In the present case, however, even though the endwalls are not far from vertical
in the (ξ, η) plane, this linearization of the boundary conditions has less appeal.
This is because the ‘propagating’ and evanescent waves no longer have any sort of
orthogonal structure along a vertical boundary (ξ = constant). They do not have any
orthogonality along the actual boundaries ξ = ξ0 and ξ = Nπ + ξ1 either, but if we are
going to use some other way (such as a collocation method) of applying the endwall
boundary conditions, we might as well use the actual endwall positions.

Since the mapping is conformal, the boundary conditions remain that the normal
derivative of ϕ should be zero at the endwalls, i.e.

ϕξ − ξ0,ηϕη = 0 at ξ = ξ0(η), (5.3a)

ϕξ − ξ1,ηϕη = 0 at ξ = Nπ + ξ1(η). (5.3b)

By differentiating (5.1) with respect to η, we obtain ξ0,η and ξ1,η. Thus once ξ0(η) and
ξ1(η) are solved from (5.1); evaluation of (5.3) is straightforward. Note that ξ0, ξ1,
ξ0.η and ξ1,η are obtained as functions of η, given the geometric parameters kBh, ε

(or ε/ε∗, ε∗ being a function of kBh), α, β and N describing the flow domain in the
(ξ, η) plane. kBh and ε characterize the geometry of the corrugation wave; the others
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Figure 12. The profile of the surface elevation (at t = 0) from exact solutions: ——, as a
function of ξ ; · · · · · ·, as a function of kBx. The envelope of the surface profile (dashed
curves) is calculated using the asymptotic theory and is shown for comparison. Parameters are
kBh = 0.5, ε/ε∗ = 0.1376, α = 5π/12, β = 4π/15, N = 16.

define the location of the endwalls. With the adjunction of a dimensional length, say
the water depth h, the physical variables in the (x, z) plane are recovered.

Given kBh, ε and λ, the Ln and thus the CFn are determined as functions of
µ. In the ‘propagating’ case, + µ and −µ can be determined from (3.18): cf. § 3.1.
In the evanescent case, a sequence µ1, µ2, . . . and its negative −µ1, −µ2, . . . are
determined from (3.21): cf. § 3.2. For each of these we can find, as described in § 3.3,
the corresponding functions ϕ, which we shall call ϕ± for ±µ, and ϕ

±
j for ±µj . A

general solution can then be constructed as

ϕ =C−ϕ− +C+ϕ+ +
∑

j=1,K

C−
j ϕ−

j + C+
j ϕ+

j , (5.4)

where the coefficients C are to be determined, and the truncation of the evanescent
waves depends on the accuracy in satisfying the true boundary conditions. Since the
main role of the evanescent waves is expected to be in adjusting the eigenfunctions
near the ends of the region, it seems likely that those with negative Floquet exponents
will be most important at the left end of the domain, and those with positive
exponents at the right end. For this reason it is better in practice to modify slightly the
normalization of ϕ+

j by replacing eµj ξ by eµj (ξ−Nπ), corresponding to shifting the origin
of ξ from 0 to Nπ. This has no effect on the periodic factors for the evanescent waves
(which have only even harmonics in their Fourier series), and has been done in (5.4).

Evaluating (5.3) at a set of K +1 values of η, we obtain a homogeneous linear
system for the 2K + 2 coefficients C. The condition for λ to be an eigenvalue is that
the matrix of the system is singular, given the geometric parameters. Once λ is found,
a corresponding non-trivial solution of the system gives the coefficients C for (5.4)
to provide the eigenfunction. This procedure, with the slight modifications needed
when one is outside the wedge of exponential behaviour, is applicable to any of the
eigenvalues, but we shall focus here on the eigenvalues close to λB where the Bragg
resonance effects can have major consequences.

We have examined a number of cases, and describe some of the results here.
First we take again the example cited in § 2.1, with kBh = 0.5, α = 5π/12, β = 4π/15,
N = 16, and ε = 0.1048 (i.e. ε/ε∗ =0.1376). From the exact solution, the ratio of
the surface amplitudes at the two ends is 2.834, slightly (about 1.5%) less than
2.878 which is given by the asymptotic theory. λ= 0.4615173, which corresponds
to ω/ωB = (λ/λB)1/2 = 0.9994; so the frequency is not exactly ωB , whereas it is in
the asymptotic solution. The profile of the surface elevation (at t = 0) is shown in
figure 12. Also shown in this figure is the amplitude for the asymptotic theory, which
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Figure 13. The normal velocity at the right endwall from exact calculation: ——, using five of
the evanescent waves and the two ‘propagating’ waves; – - -, using only the two ‘propagating’
waves. Parameters are the same as in figure 12.

is calculated using (2.14), then transformed to the ξ coordinate and normalized so
as to agree with the exact calculation at the right end. This asymptotic amplitude
is then found to be about 1.5% less than the exact value at the left end, which is
scarcely perceptible in the graph. These results indicate that, at least for this example,
the asymptotic theory is satisfactory. We have also made the exact calculation and
omitted the evanescent modes in reconstructing the surface elevation. This makes no
difference throughout most of the domain, as is to be expected, but is of some minor
significance near the ends (within two or three ξ units from either, and a difference
less than 0.23%, in this example).

The evanescent components are, however, of great importance for the horizontal
velocity near the ends. A combination of the two ‘propagating’ waves alone cannot
satisfy, pointwise, the condition of zero normal velocity on the ends (except at ε = 0).
In our calculations we have in fact used only five of the evanescent modes (at each
end) and together with the two ‘propagating’ waves have thus imposed the boundary
conditions at the six collocation points η = 0, −kBh/5, −2kBh/5, . . . , −kBh, at each
of the two ends. In figure 13 we show (for the same example) the normal velocity at
the right end for the computed eigenfunction, in comparison with the result when the
evanescent modes are deliberately omitted. Evidently the solution including five of
the evanescent modes comes much closer to satisfying the true boundary condition,
though it only does so exactly at the collocation points.

In the asymptotic theory, (2.15) suggests that extreme values of the ratio of the
surface amplitude at the two ends would occur with θ = π/2 (i.e. ω = ωB), α = π/2,
and β just slightly larger than π/4. In table 1 (see rows 1–4) we show examples of
this ratio for the eigenfunction from the exact theory and the ratio of the frequency
of the normal mode to ωB , for several values of β approaching π/4 from above,
taking kBh = 0.5 and N = 16. The results from the asymptotic theory, following the
procedure in § 2.1, are included for comparison. It is seen that both the amplitude and
frequency ratios are quite close to the asymptotic results. Comparing the data in rows
4–7 of table 1, we see that the amplitude ratio decreases rapidly as the tank length
is reduced while keeping other parameters the same. However, even when there are
only about four corrugations in the tank, the ratio of the surface amplitude at the
two ends can still be significantly greater than 1. Also notice that with the chosen
parameters β , α and ε/ε∗ the waves are no longer perfectly tuned according to the
asymptotic theory for N = 8, 6 and 4. To obtain asymptotically perfect tuning for the
smaller N , larger values of ε/ε∗ are needed: see the last two rows in table 1.
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Exact theory Asymptotic theory

N β ε/ε∗

∣∣∣∣ Â(x0 + L)

Â(x0)

∣∣∣∣ ω/ωB

∣∣∣∣ Â(x0 + L)

Â(x0)

∣∣∣∣ ω/ωB

16 4π/15 0.1700 3.0345 0.9990 3.0930 1
16 8π/31 0.2120 4.3207 0.9984 4.4434 1
16 16π/63 0.2523 6.1050 0.9978 6.3333 1
16 32π/127 0.2935 8.5814 0.9970 8.9918 1
8 32π/127 0.2935 2.5798 1.0042 2.6234 1.0074
6 32π/127 0.2935 1.9723 1.0117 1.9836 1.0154
4 32π/127 0.2935 1.5387 1.0293 1.5299 1.0344
8 32π/127 0.5964 7.9892 0.9877 8.9918 1
6 32π/127 0.8038 7.4894 0.9777 8.9918 1

Table 1. The ratio of the eigenfunction (at the two endwalls) and the ratio of the frequency
of the normal mode to ωB , for kBh = 0.5, α = π/2, several values of β close to π/4, and for
different tank lengths.

kBh 1.0 1.0 1.5 1.5 1.5 2.0 2.0
ε/ε∗ 0.5 0.7 0.5 0.7 0.9 0.7 0.9
ω/ωB 0.9992 0.9970 1.0038 1.0021 1.0010 1.0054 1.0046∣∣∣∣ Â(x0 + L)

Â(x0)

∣∣∣∣ 5.6621 12.6573 1.9739 2.7199 3.8188 1.4525 1.6367

Table 2. The ratio of the eigenfunction at the right and left end for various water depths,
using exact theory. α = π/2, β = 32π/127 and N = 16.

As we mentioned in § 2.1, the value kBh = 0.5 implies that the water level in the
tank is very low, in the sense that the aspect ratio h/L is only about 0.01 for N = 16.
It might be difficult to actually realize such a case in a laboratory tank. Increasing
kBh makes the aspect ratio of the tank more reasonable, but requires larger ε to
get a normal mode with frequency ωB . In fact for kBh = 2.0 we found, using the
asymptotic theory, that for ω =ωB it requires ε = 0.3769, which, in addition to being
pretty large for a theory that assumes ε is infinitesimal, actually exceeds ε∗ (0.2498
for kBh =2.0). However, there is no difficulty in computing examples using the exact
theory for various values of kBh, selecting appropriate values for ε/ε∗. In this way
we have examined several values of kBh, taking N = 16, α = π/2, β = 32π/127: see
table 2. These are variants of the last example cited in table 1, which gives the ratio
of the surface amplitude of nearly 9 at ε/ε∗ � 0.3 and kBh = 0.5. Evidently it is still
possible to get significant differences in the amplitude at the right and left ends even
with the more accessible tank aspect ratios h/L of about 0.03 or 0.04 (kBh = 1.5 or
2.0).

If α = −β the symmetry of the geometry indicates that an eigenfunction will also
have some kind of left–right symmetry. In such cases, the amplitudes at the two ends
of the tank are equal, smaller amplitudes occurring at the middle. We have computed
a number of examples with α = − β = − π/6, for kBh = 1.0, N = 16 and ε/ε∗ = 0.3,
0.5, 0.7, 0.9 (as well as some at kBh = 1.5). An example of the eigenfunction surface
profile is shown in figure 14, for kBh =1.0, ε/ε∗ = 0.7. In some of these cases, not only
mode 16, but also mode 17 lies inside the range of exponential behaviour. Some of
these results are summarized in table 3. In the cases referring to mode 17, as with
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kBh 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5

ε/ε∗ 0.3 0.5 0.5 0.7 0.7 0.9 0.7 0.9
mode # 16 16 17 16 17 16 16 16
ω/ωB 0.9995 1.0090 1.0252 1.0173 1.0268 1.0246 1.0005 1.0041∣∣∣∣ Â(x0)

Âcentre

∣∣∣∣ 1.4136 1.8819 – 2.6632 – 3.8186 1.4187 1.5955

Table 3. Examples of symmetrical cases where two modes lie inside the range of exponential
behaviour. α = − β = − π/6 and N = 16.
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Figure 14. The profile of the surface elevation (at t = 0) from exact solutions, for kBh = 1.0,
ε/ε∗ =0.7, α = − β = − π/6 and N = 16. ——, as a function of ξ ; · · · · · ·, as a function of kBx.
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Figure 15. The profiles of the surface elevation (at t = 0) from exact solutions, for kBh = 0.5,
ε/ε∗ =0.8038, α = π/2, β = 32π/127 and N = 6. ——, as a function of ξ ; · · · · · ·, as a function
of kBx. Note that this is the last example given in table 1.

any odd-numbered mode, the amplitude of the surface elevation at the centre is zero,
so the end-to-centre surface amplitude ratio is not then meaningful, and has been
omitted from the table.

In the examples shown in figures 12 and 14, there is little difference between ξ and
kBx, thus the surface profiles are almost identical whichever variable is used. This is
less true when the corrugation amplitude is large and the water depth is shallow: see
figure 15. Similar differences have been seen in the periodic factors of the Floquet
solutions in figures 8–10.
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6. Concluding remarks
We have examined the effects of regular bottom corrugations on water waves

(normal modes) in a tank, using an existing asymptotic theory and by developing
an exact theory which allows us to remove the restrictions on the former and to
deal with the rapidly varying aspects of the flow. The exact theory has generally
confirmed the accuracy of the asymptotic theory in its description of the slowly
varying aspects of these waves, in particular the free surface profile near the Bragg
resonance frequency ωB . The Floquet solutions (‘propagating waves’) of the exact
theory are not individually analogous to the two oppositely directed propagating
waves of the flat bottom case. However, their set of linear combinations is analogous
to the set of combinations of the latter (i.e. the so-called partially standing waves).
The exponential behaviour near the resonance frequency is a consequence of the
interaction of the two propagating waves brought about by the bottom corrugations.
The way this variation is distributed along the tank, however, is sensitively determined
by the precise location of the endwalls of the tank with respect to the corrugation
crests. With the inclusion of evanescent modes, even only a few, the exact solutions
are able to satisfy the true boundary conditions more accurately than the asymptotic
solutions. We thus expect that the evanescent waves constructed here will be of
relevance for problems other than normal modes which involve a corrugated bottom,
whenever the presence of some agency (like the ends) means that certain aspects of
the flow are not slowly varying.

Some limitations of the theoretical results given here, for applications to natural
phenomena or laboratory experiments, should be mentioned. (i) The range of the
frequency in which dramatic effects are expected is not very great, so that observations
may require rather careful tuning. (ii) Dissipative effects have not been accounted
for, but can be of importance, in particular in small-scale laboratory experiments.
(iii) Although we have not required the corrugations to be of small amplitude, we
have considered only the linear wave theory. For a sufficiently large amplitude of the
motion, some nonlinear effect must be expected.

We should like to dedicate this paper to the memory of D. Howell Peregrine, to
whom the paper was originally submitted. His untimely death has saddened us deeply.
LNH has known DHP as a friend for many years. JY had close interaction with
DHP in the summer of 2005 when he was the editor of another paper of hers. During
that time, she acquired high appreciation for DHP’s dedication and skills as an editor
and a scientist.

We should like to thank two anonymous referees whose insistence on greater
succinctness and careful suggestions have helped us to improve the quality of the
paper.

Appendix
A.1. Connection of solutions in § 2.3 to the normal modes of a flat-bottomed tank

Since T and Ω have the same sign, as ε → 0 (i.e. Ωc → 0 and Q → Ω), we have
T → ∞ if Ω > 0 or T → 0− if Ω < 0.

Case (i): As T → ∞, γ1 → 0 and γ2 → 0. From (2.20), q =mπ + α − β . Since q > 0,
m should be non-negative, and m =0 only if α >β . Using (2.22), and noting that
q = ΩL/Cg , the surface elevation is written from (2.2) as

ζ = a cos [kn(x0 − x) − kBx0]e
−iωnt + c.c., (A 1)



Normal modes of a tank 233

where ωn = ωB + Ω and kn = kB +Ω/Cg . Taylor expansion of ω2
n = gkn tanh knh for

small (kn − kB) gives ωn − ωB = (kn − kB) Cg , meaning that (A 1) is indeed a normal
mode of the flat-bottomed tank. Since knL = kBL + q = (N +m) π, it is clear that as
ε → 0, the mode associated with m =0 connects to the Nth mode of the flat-bottomed
channel when α > β , and for 1 � m � N it connects to the (N + m)th mode.

Case (ii): Since T → 0− as ε → 0+, we should first set a = T a1 so that Â and B̂ in
(2.22) survive in the limit. As in Case (i), we have ωn =ωB + Ω , but kn = kB − Ω/Cg .
From (2.20), q = mπ + β − α, thus knL = kBL − q = (N − m) π. As ε → 0, the mode
associated with m =0 connects to the Nth mode, provided β > α, and 1 �m � N now
corresponds to the (N − m)th mode.

A.2. Computation of the continued fractions

The calculation of the continued fractions is done by sequentially calculating the
numerators and denominators of the convergents via the formulas as follows. These
differ slightly from the formulas in the usual method due to the negative signs in
(3.17).

For M = 0 do

n1 = 1; d1 = Ln; q1 = n1/d1; n2 = Ln +2; d2 = LnLn +2 − 1; q2 = n2/d2;

While (|q2 − q1| >TOL) do M = M + 2;

n3 = n2Ln +M + 2 − n1; d3 = d2Ln +M +2 − d1; q3 = n3/d3;

n1 = n2; d1 = d2; q1 = q2; n2 = n3; d2 = d3; q2 = q3

enddo; CFn(µ) = q3.

In this bit of pseudo-code, TOL is a suitable small tolerance, chosen on the basis
of the accuracy desired in the computation. It is easy to show inductively from these
formulas that at any stage in the iteration we always have q2 − q1 = 1/(d2d1), so the
convergence is rapid as the the denominators increase markedly.

A.3. Markley’s algorithm

Given e and M , Markley’s algorithm for solving Kepler’s equation consists of a
starting formula followed by one step of a highly accurate iterative refinement. All
details are to be found in Markley (1996), but we sketch here the starting formula,
whose maximum relative error, 3 × 10−4, is already accurate enough for our purpose.
This formula is based on a Padé approximation to sinE, assuming |E| � π and
|M | � π, and quoted as follows:

A= [3π2 + 1.6π(π − |M |)/(1 + e)]/(π2 − 6), d = 3(1 − e) + Ae,

r = 3Ad(d − 1 + e)M +M3, q = 2Ad(1 − e) − M2, w = (|r | +
√

q3 + r2)2/3

E1 =
1

d
(2rw(w2 + wq + q2)−1 + M).

E1 is the first approximation to the solution E =E(e, M).
In our application, e = ε/ε∗ (cosh 2η/ cosh 2kBh). In solving (5.1a), M = 2α. As β

can sometimes approach −π or π (see figure 2), M is assigned as follows in solving
(5.1b) for ξ1. If π/2 <β < π, we set ξ = (N + 1)π + ξ+

1 (η) (or ξ1(η) = π + ξ+
1 (η)) and

(5.1b) becomes (β −π) = ξ+
1 −εb sin 2ξ+

1 cosh 2η. We then set M = 2(β −π). Similarly, if
−π < β < −π/2, we set ξ1 = −π + ξ−

1 , so that we solve β + π = ξ−
1 −εb sin 2ξ−

1 cosh 2η

for ξ−
1 , using M = 2(β + π). After solving we can then reconstruct ξ1 from ξ

±
1 .

Otherwise, M =2β . The approximate value of ξ0(η) or ξ1(η) (or ξ
±
1 ) is obtained

as E1/2.
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